Effects of AAC systems with "just in time" programming for children with complex communication needs

JIT project team

Penn State Communication Sciences & Disorders

- Janice Light
 - Kathryn Drager
- Jessica Currall
- Caitlin Brown
- Kelly Chew
- Megan Dooris
- Sarah Guthrie
- Evin Harbitter

- · Lisa Mellman
- · Paige Moyer
- · Nimisha Muttiah
- · Gina Pecile
- Katherine Riley
- · Vanessa Smith
- · Carly Staffin
- · Laura Wummer
- Lauren Herc

Maximizing communication for children with complex communication needs

- · AAC technologies utilizing visual scene displays (VSDs) can be used to significantly enhance the communication of young children with complex communication needs
- VSDs
 - Photos of meaningful events in the child's life
 - Vocabulary concepts embedded under hotspots with the scenes

Research on VSDs

- Infants at "first words" stage demonstrate strong preference for photo VSDs
 - Look first & longest at photo VSDs compared to grid displays (Wilkinson & Light, in progress)
- Toddlers perform better with VSDs
 - Are more accurate locating vocabulary with VSDs than grid displays (Drager, Light, et al., 2003)

Potential advantages of VSDs

- VSDs represent familiar events and activities
 - replicate the contexts in which children learn language
- Language concepts are presented in context
 - provide support for understanding & learning
- support access to language via episodic memory
- VSDs preserve conceptual & visual relationships between people & objects that occur in life
 - preserve the location, function, proportionality of concepts
- VSDs provide motivating & interesting contexts
 - stimulate interaction
- VSDs also seem to offer visual processing advantages
 - regularly process scenes visually within daily life
 - rapidly process scenes (<200 milliseconds)

Research on the effects of early intervention utilizing VSDs

- · Young children with CCN
 - Were able use AAC technologies to participate in social interactions immediately after modeling of
 - Demonstrated significant increases in their participation /turn taking as a result of early intervention utilizing VSDs
 - Demonstrated significant increases in their expressive vocabularies (Light & Drager, 2012)

The Problem

- There are two major limitations to current AAC technologies /apps for young children
 - It is time consuming to program new VSDs & vocabulary
 - As a result, partners do not add vocabulary frequently.
 - It is not possible to dynamically capture new experiences / vocabulary and add them to AAC technologies on the fly during interactions.
 - As a result, it is difficult for partners to respond to children's interests.
 - It is difficult to capitalize on "teachable moments".

Potential Solution

- One potential solution to these problems is the implementation of AAC technologies that support "just in time" (JIT) programming.
- JIT programming
 - Allows the quick & easy import of photos as VSDs
 - Allows the quick & easy programming of vocabulary as hotspots within the VSDs
 - Allows partners to respond to their children's interests by adding new communicative contexts and vocabulary "on the fly" during daily interactions.

Goals of the session

- To present the results of 3 research studies designed to investigate the effects of AAC technologies that support JIT programming
 - Study 1 Compared programming times for JIT technologies to traditional AAC technologies
 - Study 2 Investigated the effects of JIT & traditional AAC technologies on the communication of young children with CCN
 - Study 3 Provided extended investigation of JIT technologies at home & school

AAC technology with JIT programming

- Innovative JIT software called PlayTalk developed by InvoTek, Inc (Jakobs, et al.)
 - Allows quick & easy import of photos as VSDs
 - Using cell phone with Bluetooth connection
 - Allows quick & easy addition of hotspots and programming of vocabulary
 - Drawing of hotspots with finger or stylus
 - Recording of digitized speech
 - Provides drawing function to add text, numbers, or pictures to VSDs
 - Provides a simple menu easily understood by the children
 - Options always visible: represented as thumbnails of VSDs

Traditional AAC Technology

- Traditional AAC technologies
 - SGD with Speaking Dynamically Pro (SDPro) software or InterAACT software
 - Allowed preprogramming of VSDs and hotspots
 - Did not support JIT programming
 - Utilized traditional menu system
 - Options represented through thumbnails of VSDs, but not always visible
 - Required navigation through main menu or forward/ back arrows

Study 1

- · Research objective
 - To compare the time required to program VSDs and vocabulary
 - · AAC technologies with JIT programming
 - Traditional AAC technologies without JIT programming

Participants / Procedures

- · 6 adults participated
 - No prior experience in AAC
- Procedures
 - Program 2 VSDs with 4 hotspots each (8 vocab concepts)
 - Programmed 3 different systems
 - PlayTalk technology with JIT programming
 - SD Pro software
 - InterAACT software on Vmax
 - Order of systems counterbalanced across participants
 - · Control order effects

Time required to program 2 VSDs with 4 hotspots each

Participant	Programming time in minutes		
	PlayTalk	SDPro	V Max
Participant 1	5	22	37
Participant 2	4	19	31
Participant 3	5	23	46
Participant 4	6	20	38
Participant 5	4	21	40
Participant 6	5	20	34
Mean	4.8	20.8	37.7

Time required to program

- Programming with JIT system was incredibly efficient compared to traditional AAC systems
 - SDPro required 5 times as much programming time
 - Dynavox InterAACT software required 7 times as much programming time
 - Clinicians and parents with no prior experience would be able to add 5-10 new concepts using JIT in less than 5 minutes

Study 1 - Implications of results

- Results of Study 1 suggest that JIT technologies should support
 - Increased programming of VSDs and vocabulary for young children with CCN
 - Increased opportunities for language learning by young children
- But will it work in real life interactions with young children with CCN?

Study 2 - Research Objectives

- To investigate the effects of AAC technology that supports JIT programming on the communication of young children with CCN
- Specifically to compare the effects of JIT technology to a traditional AAC system (without JIT capabilities) on:
 - · the number of communicative turns taken and
 - the amount of vocabulary available to preschoolers with CCN.

Participants

- · 3 children participated
 - Aged 3-5 years
 - Developmental delay
 - E.g., Down syndrome, severe developmental apraxia
 - Had complex communication needs
 - Speech inadequate to meet their communication needs
 - Used AAC to enhance their communication
 - Signs, low tech systems, schedules
 - Were not using SGDs at the time of the study

Procedures

- Alternating treatment design with two conditions
 - 2 intervention sessions per week (counterbalanced)
 - One with JIT PlayTalk software
 - One with SD Pro software
- AAC technologies were preprogrammed with VSDs /hotspots
 - Identical VSDs & hotspots programmed in each condition

Procedures

- AAC technologies were introduced during play interactions with children with CCN
 - New VSDs and hotspots added during the play interactions as required in JIT condition
 - Not possible to add new VSDs or hotspots during interaction in SDPro condition

Results

- · Children with CCN
 - Took significantly more turns during 15-min play interactions using JIT PlayTalk compared to SDPro
 - Mean of 13 turns with SDPro (range 10-18)
 - Mean of 25 turns with JIT (range 19-29)

Results

- · Children with CCN
 - Had access to significantly more vocabulary concepts using JIT PlayTalk compared to SDPro
 - Mean of 14.5 more concepts added each week with JIT than SDPro
 - Mean of 58 more concepts per child added across the 4 weeks with JIT than SDPro

Discussion

- · Children with CCN
 - Took more turns using JIT PlayTalk compared to SDPro
 - Had access to more vocabulary concepts using JIT PlayTalk compared to SDPro
 - Relevant VSDs and vocabulary were easily added
 - Partner could easily capture new events & vocabulary in response to children's interests
 - Children were motivated to communicate since they had easy access to vocabulary of immediate interest to
 them.

Time to add VSDs and vocabulary

- Programming using the JIT software during interaction with the child was very efficient
 - Took less than 1 min from the time it was decided to add a VSD & hotspots until the child was able to use the new concepts to communicate
 - Took an average of 33 sec to take a photo & import it to the system as a VSD
 - Took an average of 16 seconds to draw the hotspots and record the vocabulary

Challenges of JIT programming

- JIT programming allowed partners to rapidly add VSDs & vocab during interactions
 - Vocabulary concepts were immediately available to the children for use in the interaction
- But did the children lose interest during JIT programming?

Children's engagement during JIT programming

- The children demonstrated high levels of interest during JIT programming
 - 97% engagement during VSD import /creation
 - 95% engagement during hotspot creation
 - Engagement levels were higher than expected
 - Children were very engaged in the process of building AAC displays
 - They assisted with the process

Limitations of the study

- Limited number of participants/preschoolers
 - Future research is required to investigate effects with larger number of children with CCN
 - · Range of ages and disabilities
- Short term evaluation with clinician/ researcher
 - Future research is required to investigate effects over a longer time period across various partners and environments

Study 3 – Long term evaluation

- Research objectives
 - To investigate the effects of AAC technologies compared to baseline prior to intervention
 - To compare the effects of JIT technology to a traditional AAC system (without JIT capabilities) on:
 - the number of communicative turns taken and
 - the amount of vocabulary available
 - To investigate the long term effects in the home/ school environment

Participants

- 5 children participated
 - 4 were between 18-30 months; 1 was 5 years old
 - Developmental delay
 - Down syndrome, Down syndrome & autism, cerebral palsy, Prader Willi, rare chromosomal disorder
 - Had complex communication needs
 - Speech inadequate to meet their communication needs
 - Used AAC to enhance their communication
 - · Signs, low tech systems, schedules
 - Were not using SGDs at the time of the study

Study 3 - Design

- Parents /school team involved in all phases
- · Three phases
 - Baseline prior to intervention
 - Alternating treatment with two counterbalanced conditions
 - JIT software
 - · SD Pro software
 - Long term follow up at home, preschool, day care
 - · Using JIT technology only

Procedures

- Procedures in alternating treatment were similar to those in Study 2
- · Follow up phase
 - Lasted at least 2 months post alternating treatment phase
 - Parents /early intervention teams were primary facilitators
 - Provided with training in JIT system operation / use
 30-60 minutes
 - Responsible for programming / care / implementation of JIT

Effects of AAC technologies

- The children with CCN took significantly more turns using the AAC technologies compared to baseline condition without AAC technology
 - Mean gain of +12 turns with traditional AAC technology compared to baseline
 - range +7 to +21 turns across the children
 - Mean gain of +28 turns with JIT technology compared to baseline
 - range +10 to +40 turns across the children

Effect of JIT technology compared to traditional AAC technology

- The children took significantly more turns using JIT PlayTalk compared to SDPro
 - Mean of 22 turns in 15 min with SDPro
 - Range of 8-41 turns across the children with SDPro
 - Mean of 38 turns in 15 min with JIT system
 - Range of 11-60 turns across the children with JIT system

Long term follow up at home, school, daycare

- The children continued to increase their rates of turn taking with JIT technology during long term follow up in home, school, or daycare settings
 - Mean of 51 turns in 15 min during follow up
 - Range of 17-78 turns across children
 - Mean gain of +13 turns from intervention with JIT to follow up
 - Range of +6 to +23 across children
 - Mean gain of +40 turns from baseline to follow up with JIT
 - Range of +16 to +58 across children

Results

- The children had access to significantly more vocabulary concepts using JIT technology compared to SDPro
- Parents and professionals continued to add vocabulary regularly with the JIT technology at home, school, or daycare
 - Mean rate of +23 vocabulary concepts added per week for the children
 - Range of +6 to +52 concepts added across children per week

• This study

Summary - Replicates effects of Study 2 with more children • Younger (ages 2-5 years) · Range of disabilities - Confirms positive effects of AAC technologies/ SGDs - Specifically demonstrates the advantages of SGDs with JIT programming compared to traditional SGDs · Increased turn taking · Access to increased vocabulary

Children's engagement in vocabulary development

- The children demonstrated significant involvement in developing their AAC systems
 - Adding new contexts as VSDs
 - · Adding new vocabulary concepts within these contexts
- They expressed frustration with the traditional AAC technology when vocabulary could not be added

Extension to natural environments

- The positive effects of JIT programming extended to
 - Use by parents / professionals
 - In natural environments at home, school or daycare
 - With only minimal training required
 - 30-60 min of informal training

Limitations

- · Results would be strengthened with
 - Additional data collected at baseline and during alternating treatment
 - Additional replications across more individuals
 - · Different ages and disabilities
 - Older individuals who are beginning communicators
 - Longer term evaluation in home, school, daycare environments

Conclusions

- This project represents an exciting transition for the field to AAC systems that are truly dynamic
 - Capture interaction on the fly as it occurs
 - Support dynamic learning /language growth
 - Allow partners to respond to children's interests
 - Reduce programming demands on clinicians & families
 - · Incredibly easy and time saving
 - Allow children to be actively engaged in the development of their AAC systems

Impact on children with CCN

- With access to JIT technologies, parents & clinicians will be better able to support
 - Increased participation by children with CCN
 - Increased opportunities for language learning
 - Greater vocabulary development
 - Increased learning & educational achievement
- Children with CCN will have
 - Increased control over vocabulary acquisition
 - Increased ownership of their AAC systems

Acknowledgements Conflict of interest

- We are very grateful to the children, families, & professionals who participated in these studies.
- These projects were funded by NIH grant #1R43HD059231-01A1 and by NIDRR grant #H133E080011 (AAC-RERC)
- Funding for some of the students involved in this project was provided by U.S. Department of Education grant #H325K080333
- The authors of this paper have no financial or nonfinancial conflict of interest